PRODUCT OVERVIEW

OVERVIEW

Samsung's S3C8-series of 8-bit single-chip CMOS microcontrollers offers a fast and efficient CPU, a wide range of integrated peripherals, and various mask-programmable ROM sizes. Important CPU features include:

- Efficient register-oriented architecture
- Selectable CPU clock sources
- Idle and Stop power-down mode release by interrupt
- Built-in basic timer with watchdog function

A sophisticated interrupt structure recognizes up to eight interrupt levels. Each level can have one or more interrupt sources and vectors. Fast interrupt processing (within a minimum six CPU clocks) can be assigned to specific interrupt levels.

S3C80A4/C80A8/C80A5/C80B4/C80B8/C80B5 MICROCONTROLLER

The S3C80A4/C80A8/C80A5/C80B4/C80B8/C80B5 single-chip CMOS microcontroller is fabricated using a highly advanced CMOS process and is based on Samsung's newest CPU architecture.

The S3C80A4/C80A8/C80A5/C80B4/C80B8/C80B5 is the microcontroller which has mask-programmable ROM.

The S3P80A4/P80A8/P80A5/P80B4/P80B8/P80B5 is the microcontroller which has one-time-programmable EPROM.

Using a proven modular design approach, Samsung engineers developed the S3C80A4/C80A8/C80A5/C80B4/C80B8/C80B5 by integrating the following peripheral modules with the powerful SAM87 RC core:

- Three programmable I/O ports, including two 8-bit ports and one 3-bit port, for a total of 19 pins.
- Internal LVD circuit and eight bit-programmable pins for external interrupts.
- One 8-bit basic timer for oscillation stabilization and watchdog functions (system reset).
- One 8-bit timer/counter and one 16-bit timer/counter with selectable operating modes.
- One 8-bit counter with auto-reload function and one-shot or repeat control.

The S3C80A4/C80A8/C80A5/C80B4/C80B8/C80B5 is a versatile general-purpose microcontroller which is especially suitable for use as remote transmitter controller. It is currently available in a 24-pin SOP and SDIP package.

FEATURES

CPU

SAM87RC CPU core

Memory

- Program memory (ROM)
 - S3C80A4/C80B4: 4-Kbyte (0000H–0FFFH)
 - S3C80A8/C80B8: 8-Kbyte (0000H–1FFFH)
 - S3C80A5/C80B5: 15,872 byte (0000H–3E00H)
- Data memory: 256-byte RAM

Instruction Set

- 78 instructions
- IDLE and STOP instructions added for powerdown modes

Instruction Execution Time

• 500 ns at 8-MHz f_{OSC} (minimum)

Interrupts

- 13 interrupt sources with 10 vector.
- 5 level, 10 vector interrupt structure

I/O Ports

- Two 8-bit I/O ports (P0-P1) and one 3-bit port (P2) for a total of 19 bit-programmable pins
- Eight input pins for external interrupts

Carrier Frequency Generator

One 8-bit counter with auto-reload function and one-shot or repeat control (Counter A)

Back-up mode

 When V_{DD} is lower than V_{LVD}, the chip enters Back-up mode to block oscillation and reduce the current consumption.

Timers and Timer/Counters

- One programmable 8-bit basic timer (BT) for oscillation stabilization control or watchdog timer function
- One 8-bit timer/counter (Timer 0) with two operating modes; Interval mode and PWM mode.
- One 16-bit timer/counter with one operating modes; Interval mode

Low Voltage Detect Circuit

- Low voltage detect for reset or Back-up mode.
- Low level detect voltage - S3C80A4/C80A8/C80A5: 2.20 V (Typ) ± 200 mV - S3C80B4/C80B8/C80B5: 1.90 V (Typ) ± 200 mV

Auto Reset Function

- Reset occurs when stop mode is released by P0.
- When a falling edge is detected at Port 0 during Stop mode, system reset occurs.

Operating Temperature Range

• $-40^{\circ}C$ to $+85^{\circ}C$

Operating Voltage Range

- 1.7 V to 3.6 V at 4 MHz f_{OSC}
- 2.0 V to 3.6 V at 8 MHz f_{OSC}

Package Type

• 24-pin SOP/SDIP

BLOCK DIAGRAM

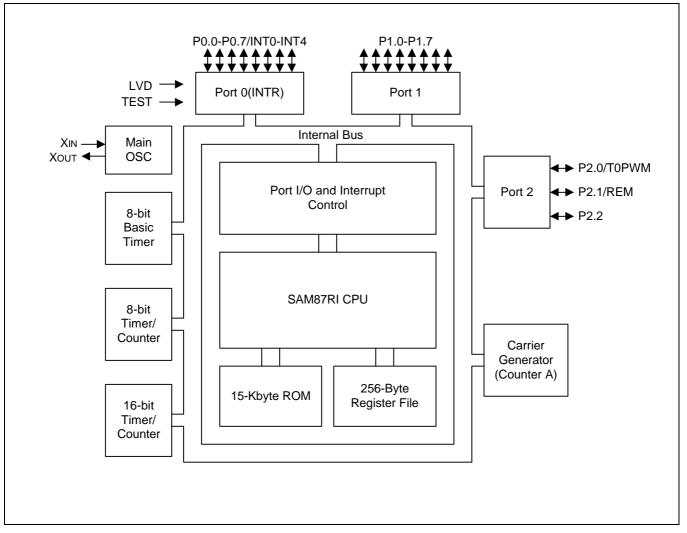


Figure 1-1. Block Diagram

PIN ASSIGNMENTS

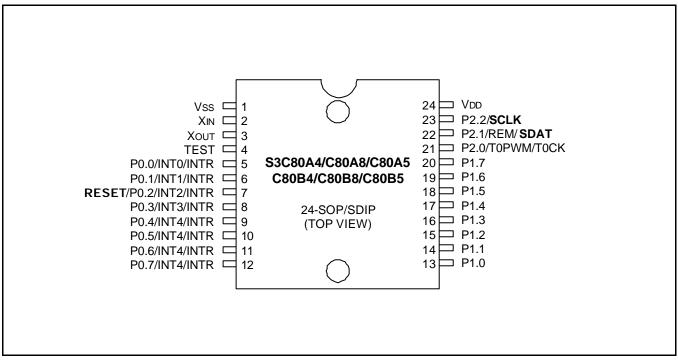


Figure 1-2. Pin Assignment Diagram (24-Pin SOP/SDIP Package)

PIN DESCRIPTIONS

Pin Names	Pin Type	Pin Description	Circuit Type	24-Pin Number	Shared Functions
P0.0–P0.7	I/O	I/O port with bit-programmable pins. Configurable to input or push-pull output mode. Pull-up resistors are assignable by software. Pins can be assigned individually as external interrupt inputs with noise filters, interrupt enable/ disable, and interrupt pending control. Interrupt with Reset(INTR) is assigned to Port 0.	1	5–12	INT0 – INT4/INTR
P1.0–P1.7	I/O	I/O port with bit-programmable pins. Configurable to input mode or output mode. Pin circuits are either push-pull or n- channel open-drain type. Pull-up resistors are assignable by software.	2	13–20	
P2.0 P2.1 P2.2	I/O	3-bit I/O port with bit-programmable pins. Configurable to input mode, push-pull output mode, or n-channel open-drain output mode. Input mode with pull-up resistors are assignable by software. The two pins of port 2 have high current drive capability.	3 4 5	21–23	REM/T0CK
X _{IN} , X _{OUT}	_	System clock input and output pins	-	2, 3	_
TEST	I	Test signal input pin (for factory use only; must be connected to $V_{\rm SS}$).	-	4	_
V _{DD}	_	Power supply input pin	-	24	-
V _{SS}	_	Ground pin	-	1	_

Table 1-1. Pin Descriptions

PIN CIRCUITS

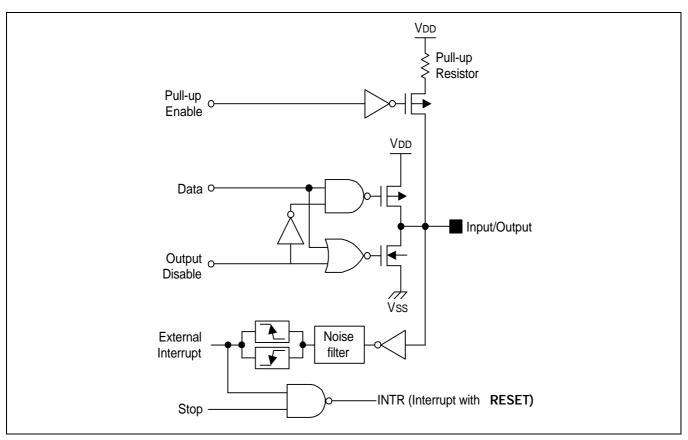


Figure 1-3. Pin Circuit Type 1 (Port 0)

NOTE

Interrupt with reset (INTR) is assigned to port 0 of S3C80A4/C80A8/C80A5/C80B4/C80B8/C80B5. It is designed to release stop status with reset. When the falling/rising edge is detected at any pin of Port 0 during stop status, non vectored interrupt INTR signal occurs, after then system reset occurs automatically. It is designed for a application which are using "stop mode" like remote controller. If stop mode is not used, INTR do not operates and it can be discarded.

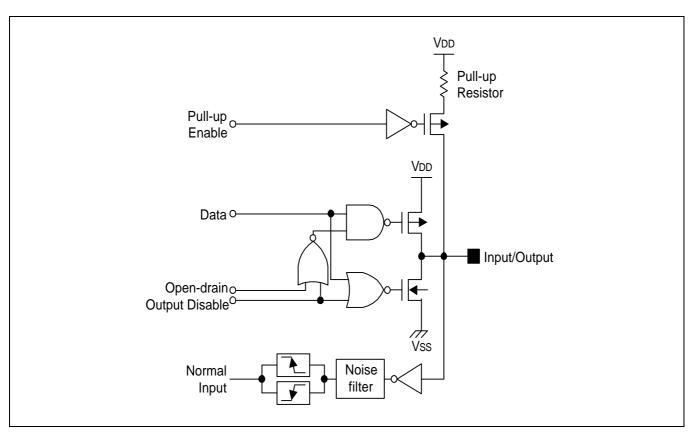


Figure 1-4. Pin Circuit Type 2 (Port 1)

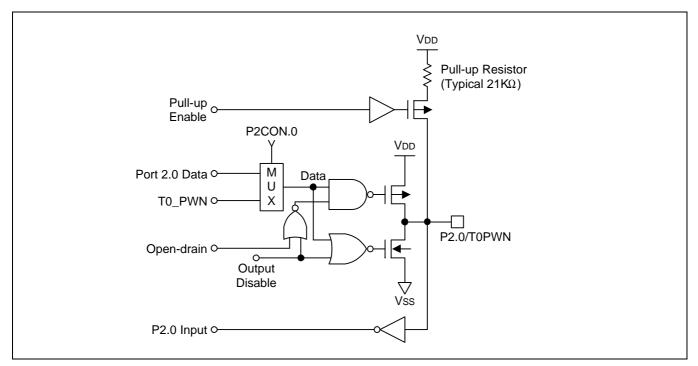


Figure 1-5. Pin Circuit Type 3 (P2.0)

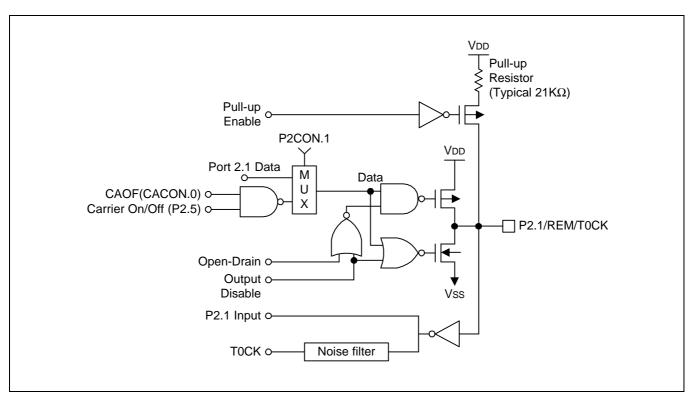


Figure 1-6. Pin Circuit Type 4 (P2.1)

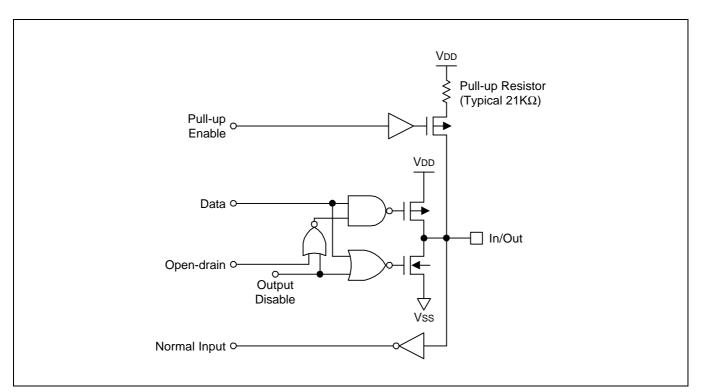


Figure 1-7. Pin Circuit Type 5 (P2.2)

13 ELECTRICAL DATA

OVERVIEW

In this section, S3C80A4/C80A8/C80A5/C80B4/C80B8/C80B5 electrical characteristics are presented in tables and graphs. The information is arranged in the following order:

- Absolute maximum ratings
- D.C. electrical characteristics
- Data retention supply voltage in Stop mode
- Stop mode release timing when initiated by a Reset
- I/O capacitance
- A.C. electrical characteristics
- Input timing for external interrupts (port 0)
- Oscillation characteristics
- Oscillation stabilization time

Table 13-1. Absolute	Maximum Ratings
----------------------	-----------------

$(T_A = 25 \ ^{\circ}C)$ Parameter	Symbol	Conditions	Rating	Unit
Supply voltage	V _{DD}	-	- 0.3 to + 6.5	V
Input voltage	V _{IN}		-0.3 to V _{DD} + 0.3	V
Output voltage	V _O	All output pins	-0.3 to V _{DD} + 0.3	V
Output current High	I _{OH}	One I/O pin active	- 18	mA
		All I/O pins active	- 60	
Output current Low	I _{OL}	One I/O pin active	+ 30	mA
		Total pin current for ports 0, 1, and 2	+ 100	
		Total pin current for port 3	+ 40	
Operating temperature	Τ _Α	-	- 40 to + 85	°C
Storage temperature	T _{STG}	-	- 65 to + 150	°C

Table 13-2. D.C. Electrical Characteristics

(T_A = -40 °C to +85 °C, V_{DD} = 2.0 V to 3.6 V)

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Operating Voltage	V _{DD}	f _{OSC =} 8MHz (Instruction clock = 1.33 MHz)	2.0	-	3.6	V
		f _{OSC =} 4MHz (Instruction clock = 0.67 MHz)	1.7	-	3.6	
Input High voltage	V _{IH1}	All input pins except V_{IH2} and V_{IH3}	0.8 V _{DD}	-	V _{DD}	V
	V _{IH2}	X _{IN}	V _{DD} - 0.3		V _{DD}	
Input Low voltage	V _{IL1}	All input pins except V _{IL2} and V _{IL3}	0	-	0.2 V _{DD}	V
	V _{IL2}	X _{IN}			0.3	
Output High voltage	V _{OH1}	V_{DD} = 2.4 V, I_{OH} = -6 mA Port 2.1 only, T_{A} = 25°C	V _{DD} – 0.7			V
	V _{OH2}	$V_{DD} = 2.4 \text{ V}, I_{OH} = -2.2 \text{mA}$ Port 2.0, 2.2, $T_A = 25^{\circ}\text{C}$	V _{DD -} 0.7	-	_	
	V _{OH3}	$V_{DD} = 2.4 \text{ V}, I_{OH} = -1 \text{ mA}$ All output pins except Port2,	V _{DD -} 1.0	-	-	
		$T_A = 25 °C$				

Table 13-2. D.C.	Electrical	Characteristics	(Continued)

$(T_A =$	= -40	°C t) +	85 °C	V _{DD}	=	2.0 V	to	3.6 V))
----------	-------	------	-----	-------	-----------------	---	-------	----	--------	---

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Output Low voltage	V _{OL1}	$V_{DD} = 2.4 \text{ V}, I_{OL} = 12 \text{ mA, port}$ 2.1 only, $T_A = 25 ^{\circ}\text{C}$		0.4	0.5	
	V _{OL2}	$V_{DD} = 2.4 \text{ V}, I_{OL} = 5 \text{ mA}$ Port 2.0,2.2, $T_A = 25 \text{ °C}$	_	0.4	0.5	
	V _{OL3}	$I_{OL} = 1 \text{ mA}$ Ports 0 and 1, $T_A = 25 \text{ °C}$		0.4	1.0	
Input High leakage current	I _{LIH1}	$V_{IN} = V_{DD}$ All input pins except X_{IN} and X_{OUT}	-	_	1	μΑ
	I _{LIH2}	$V_{IN} = V_{DD}, X_{IN} \text{ and } X_{OUT}$	-		20	
Input Low leakage current	I _{LIL1}	V _{IN} = 0 V All input pins except X _{IN} , X _{OUT}	-	-	- 1	μΑ
	I _{LIL2}	$V_{IN} = 0 V$ X_{IN} and X_{OUT}			- 20	
Output High leakage current	I _{LOH}	V _{OUT} = V _{DD} All output pins	-	_	1	μA
Output Low leakage current	ILOL	V _{OUT} = 0 V All output pins	-	-	- 1	μΑ
Pull-up resistors	R _{L1}	$V_{DD} = 2.4V, V_{IN} = 0 V;$ $T_A = 25 \ ^{\circ}C$, Ports 0-2	44	55	95	KΩ
Supply current (note)	I _{DD1}	V _{DD} = 3.6 V ± 10% 8-MHz crystal	-	5	9	mA
		4-MHz crystal		2.6	5	
	I _{DD2}	Idle mode; $V_{DD} = 3.6 V \pm 10 \%$ 8-MHz crystal	_	1.0	2.5	
		4-MHz crystal		0.7	2.0	
	I _{DD3}	Stop mode; V _{DD} = 3.6 V	_	1	6	uA

NOTE: Supply current does not include current drawn through internal pull-up resistors or external output current loads.

Table 13-3. Characteristics of Low Voltage Detect circuit

 $(T_A = -40 \degree C \text{ to } + 85 \degree C)$

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Hysteresys Voltage of LVD (Slew Rate of LVD)	ΔV	_	-	30	300	mV
Low level detect voltage (S3C80A4/C80A8/C80A5)	V _{LVD}	_	2.0	2.20	2.40	V
Low level detect voltage (S3C80B4/C80B8/C80B5)	V _{LVD}	_	1.70	1.90	2.1	V

Table 13-4. Data Retention Supply Voltage in Stop Mode

 $(T_A = -40 \degree C \text{ to } + 85 \degree C)$

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Data retention supply voltage	V _{DDDR}	_	1.0	-	3.6	V
Data retention supply current	I _{DDDR}	V _{DDDR} = 1.0 V Stop mode	-	Ι	1	μA

Table 13-5. Input/output Capacitance

(T_A = -40° C to $+85^{\circ}$ C, V_{DD} = 0 V)

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Input capacitance	C _{IN}	f = 1 MHz; unmeasured pins are connected to V_{SS}	_	_	10	pF
Output capacitance	C _{OUT}					
I/O capacitance	C _{IO}					

Table 13-6. A.C. Electrical Characteristics

 $(T_A = -40 \degree C \text{ to } + 85 \degree C)$

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Interrupt input, High, Low width	t _{INTH} , t _{INTL}	P0.0–P0.7, V _{DD =} 3.6 _V	200	300		ns

Table 13-7.	Oscillation	Characteristics
-------------	--------------------	-----------------

$(I_A = -40 \ C + 85 \ C)$									
Oscillator	Clock Circuit	Conditions	Min	Тур	Max	Unit			
Crystal		CPU clock oscillation frequency	1	_	8	MHz			
Ceramic		CPU clock oscillation frequency	1	_	8	MHz			
External clock	External Clock XIN Open Pin XOUT	X _{IN} input frequency	1	-	8	MHz			

```
(T_A = -40 \ ^{\circ}C + 85 \ ^{\circ}C)
```


Table 13-8. Oscillation Stabilization Time

 $(T_A = -40 \ ^{\circ}C + 85 \ ^{\circ}C, V_{DD} = 3.6 \ V)$

Oscillator	Test Condition	Min	Тур	Max	Unit
Main crystal	f _{OSC} > 400 kHz	_	_	20	ms
Main ceramic	Oscillation stabilization occurs when V _{DD} is equal to the minimum oscillator voltage range.		-	10	ms
External clock (main system)	$X_{\mbox{\scriptsize IN}}$ input High and Low width $(t_{\mbox{\scriptsize XH}},t_{\mbox{\scriptsize XL}})$	25	_	500	ns
Oscillator stabilization wait time	t_{WAIT} when released by a reset $^{(1)}$	_	2 ¹⁶ / f _{OSC}	_	ms
	t_{WAIT} when released by an interrupt $^{(2)}$	-	-	-	ms

NOTES:

1. f_{OSC} is the oscillator frequency.

2. The duration of the oscillation stabilization time (t_{WAIT}) when it is released by an interrupt is determined by the setting in the basic timer control register, BTCON.

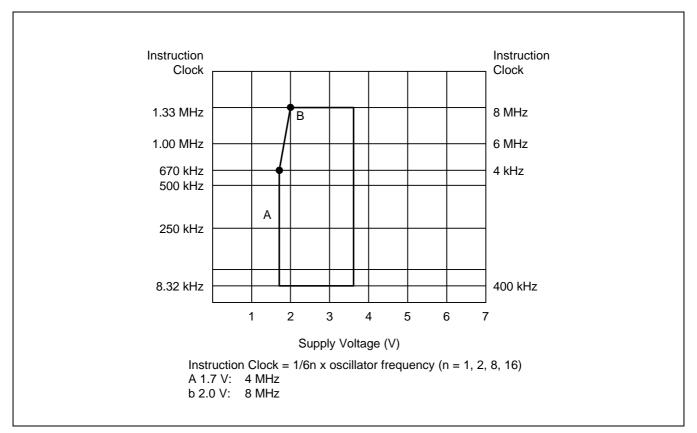


Figure 13-2. Operating Voltage Range of S3C80A4/C80A8/C80A5/C80B4/C80B8/C80B5

14 MECHANICAL DATA

OVERVIEW

The S3C80A4/C80A8/C80A5/C80B4/C80B8/C80B5 microcontroller is currently available in a 24-pin SOP and SDIP package.

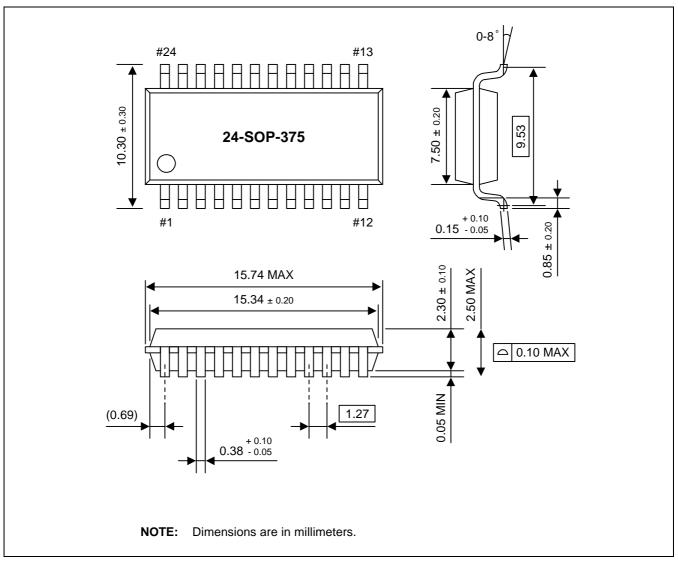


Figure 14-1. 24-Pin SOP Package Mechanical Data

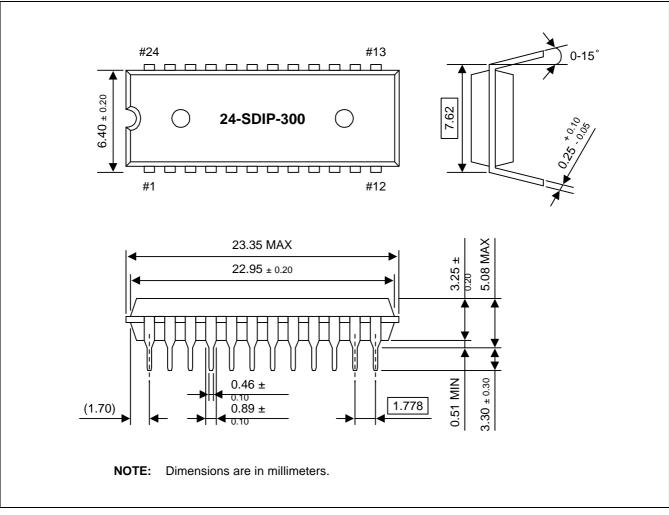


Figure 14-2. 24-Pin SDIP Package Mechanical Data

