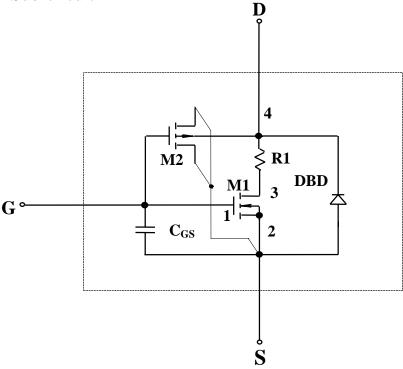
SPICE Device Model Si4430DY

N-Channel 30-V (D-S) MOSFET

Characteristics


- N-channel Vertical DMOS
- Macro-Model (Sub-circuit)
- Level 3 MOS
- Applicable for Both Linear and Switch Mode
- Applicable Over a -55 to 125°C Temperature Range
- Models Gate Charge, Transient, and Diode Reverse Recovery Characteristics

Description

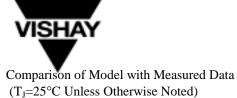
The attached SPICE Model describes typical electrical characteristics of the n-channel vertical DMOS. The sub-circuit model was extracted and optimized over a 25°C to 125°C temperature range under pulse conditions for 0 to 10 volts gate drives. Saturated output impedance model accuracy has been maximized for gate biases near threshold. A novel gate-to-drain feedback

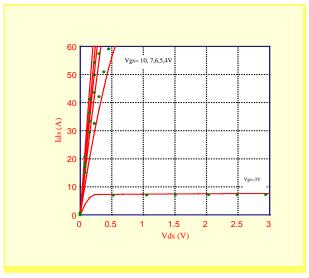
capacitance network is used to model gate charge characteristics while avoiding convergence problems of switched $C_{\rm gd}$ model. Model parameter values are optimized to provide a best fit to measure electrical data and are not intended as an exact physical description of a device.

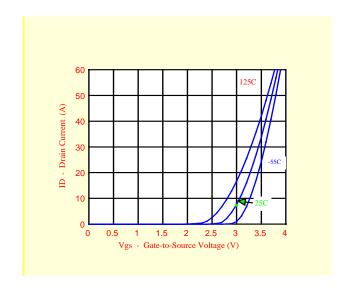
Model Sub-circuit

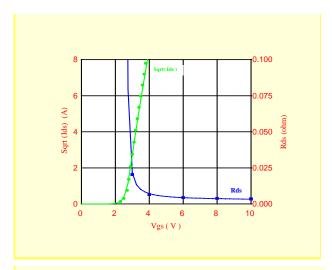
This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits.

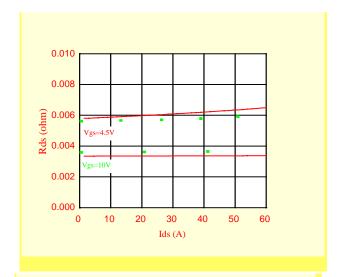
Siliconix 4/16/01 Document: 71460

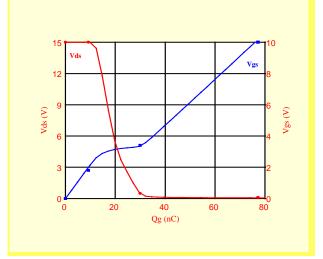

N-Channel Device (T_J=25°C Unless Otherwise Noted)


Parameter	Symbol	Test Conditions	Typical	Unit
Static				
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	1.80	V
On-State Drain Current ^a	$I_{D(on)}$	$V_{DS} \ge 5V$, $V_{GS} = 10V$	1196	A
Drain-Source On-State Resistance ^a	r _{DS(on)}	$V_{GS} = 10V, I_D = 23A$	0.0034	Ω
		$V_{GS} = 4.5V, I_D = 17A$	0.0059	
Forward Transconductance ^a	\mathbf{g}_{fs}	$V_{DS} = 15V, I_D = 23A$	55	S
Diode Forward Voltage ^a	V_{SD}	$I_{S} = 2.9 A, V_{GS} = 0 V$	0.82	V
Dynamic ^b				
Total Gate Charge	Q_{g}		37	
Gate-Source Charge	Q_{gs}	$V_{DS} = 15V, V_{GS} = 4.5V,$	15	nC
		$I_D = 23A$		
Gate-Drain Charge	Q_{gd}		12	
Turn-On Delay Time	$t_{d(on)}$		24	
Rise Time	$t_{\rm r}$	$V_{DD} = 15V, R_L = 15\Omega$	32	
Turn-Off Delay Time	$t_{d(off)}$	$I_D \cong 1A, V_{GEN} = 10V,$	45	ns
		$R_G = 6\Omega$		
Fall Time	t_{f}	7	73	
Source-Drain Reverse Recovery Time	t_{rr}	$I_F = 2.9 A$, di/dt=100A/ μ s	50	


Notes:


- a) Pulse test; pulse width $\leq 300 \,\mu\text{s}$, duty cycle $\leq 2\%$
- b) Guaranteed by design, not subject to production testing


SPICE Device Model Si4430DY



Siliconix 4/16/01 Document: 71460