Preliminary TOSHIBA CMOS Digital Integrated Circuit Silicon Monolithic

TC90A67F

Single Chip Picture-in-Picture IC (PAL/NTSC)

TC90A67F is a Picture-in-Picture (PIP) IC including a PIP controller and a PAL/NTSC decoder function on a chip. TC90A67F has an ADC, a video decoder, a vertical filter, a field memory, DACs and so on, so that it is easy to design a PIP application with the least external components.

Features

Video Decoder for the Sub-Picture

- NTSC, PAL (Europe), M-PAL and N-PAL systems

Weight: 1.6 g (typ.)

- Automatic color system identification
- 8-bit ADC for a composite video input
- Y/C separation by built-in digital filters
- ACC, Color killer circuits
- Contrast, Brightness, Tint and Color level controls
- Accessible V-chip signal data via. IIC bus

Main-Picture System Clock

- External PLL circuit for main-picture system clock (A recommended IC TI: TLC2933)

PIP Controller

- $525-60 \mathrm{~Hz}, 626-50 \mathrm{~Hz}$ and mixed are available
- Vertical filter
- Field memory (181 kbit)
- PIP mode: Single PIP with $1 / 9$ or $1 / 16$ size, 6 PIPs with $1 / 36$ size
- Flexible PIP position
- 3ch 8-bit DACs for YUV or RGB outputs
- YUV to RGB converter

Others

- 42 MHz crystal oscillator
- $\mathrm{I}^{2} \mathrm{C}$ bus control
- Package: QFP80
- Power supply: 3.3 V

Block Diagram

Terminal Connection Diagram

QFP80-P-1420-0.80B

(64) (63) (62) (61) (60) (59) (58) (57) (56) (55) (54) (53) (52) (51) (50) (49) (48) (47) (46) (45) (44) (43) (42) (41)

Terminal Function

QFP80-P-1420-0.80B

PIN	Name	I/O	Function	Condition
1	$\mathrm{AV}_{\text {SS }}$	-	Ground for DAC	
2	BIASA	-	ADC bias voltage	
3	$\mathrm{V}_{\text {REFH }}$	-	Upper limit reference voltage of ADC	normal: 2.3 V
4	$\mathrm{AV}_{\text {SS }}$	-	Ground for ADC	
5	CVI	1	Composite video signal input	
6	$A V_{\text {DD }}$	-	Power supply for ADC	
7	$V_{\text {REFL }}$	-	Lower limit reference voltage of ADC	normal: 1.0 V
8	$\mathrm{AV}_{\text {SS }}$	-	Ground for ADC	
9	NC	-		
10	CKOUT	0	384fH-clock output	
11	AVDD	O	Power supply for VCO	
12	BIASD	-	DAC bias voltage	
13	$\mathrm{V}_{\text {REF }}$	-	Lower limit reference voltage of DAC	normal: 1.8 V
14	NC	-		
15	NC	-		
16	$\mathrm{AV}_{\text {SS }}$	-	Ground for VCO	
17	FILTER	O	VCO filter terminal	
18	$A V_{\text {DD }}$	-	Power supply for DAC	
19	CKIN	1	384fH-clock input	
20	NC	-		
21	VSS	-	Ground for digital circuit	
22	CKC	1	Clock input (sub-picture)	
23	CKCSEL	1	Internal/external 384fH VCO select	L: internal, H: external
24	CLMP	O	Clamp level output	
25	$V_{\text {DD }}$	-	Power supply for digital circuit	
26	TEST	1	Test pin	normal: H
27	$\mathrm{V}_{\text {SS }}$	-	Ground for crystal oscillator	
28	XI	1	42 MHz crystal oscillator input	
29	XO	O	42 MHz crystal oscillator output	
30	NC	-		
31	V_{DD}	-	Power supply for crystal oscillator	
32	NC	-		
33	NC	-		
34	CSTD	O	Internal signal output	
35	VSS	-	Ground for DRAM	
36	VDD	-	Power supply for DRAM	
37	PFIELD	O	Field odd/even output (main picture)	H: even, L: odd
38	CFIELD	O	Field odd/even output (sub picture)	H: even, L: odd
39	CVREF	O	Vertical sync. output (sub picture)	
40	$\mathrm{CH}_{\text {REF }}$	O	Horizontal sync. output (sub picture)	
41	NC	-		

PIN	Name	I/O	Function	Condition
42	CKILL	0	Color killer detection output (sub picture)	H: color killer ON, L: OFF
43	VCHIP	1	23rd-line detect signal output	23rd-line: H
44	RESET	1	Reset input	L: reset
45	$V_{\text {DD }}$	-	Power supply for digital circuit	
46	SDA	1/0	$I^{2} \mathrm{C}$ BUS data input, data and acknowledge output	
47	SCL	1	$I^{2} \mathrm{C}$ BUS clock input	
48	NC	-		
49	PIPEN	1	PIP enable	normal: H
50	YS	0	Main, sub-picture switching pulse	sub-picture: high
51	NC	-		
52	$V_{s s}$	0	Ground for digital circuit	
53	PVD	1	Vertical sync. input (main picture)	normal: negative
54	$V_{\text {DD }}$	0	Power supply for digital component	
55	NC	-		
56	PH ${ }_{\text {REF }}$	O	Horizontal sync. output (main picture)	
57	CKPSEL	1	CKP frequency selection	L: 24 MHz , H: 48 MHz
58	CKP	1	Clock input (main-picture)	
59	VSS	-	Ground for digital circuit	
60	PHD	1	Horizontal sync. input (main picture)	normal: positive
61	NC	-		
62	TESTM0	1	Test pin	normal: H
63	TESTM1	1	Test pin	normal: H
64	TESTM2	1	Test pin	normal: H
65	TEST2	1	Test pin	normal: H
66	$V_{\text {DD }}$	-	Power supply for digital circuit	
67	$V_{S S}$	-	Ground for digital circuit	
68	NC	-		
69	NC	-		
70	$V_{\text {REFD }}$	1	Lower limit reference voltage of DAC	normal: 1.8 V
71	BIAS2	-	DAC bias reference voltage	
72	NC	-		
73	BIAS1	-	DAC bias reference voltage	
74	NC	-		
75	$\mathrm{AV}_{\mathrm{DD}}$	-	Power supply for DAC	
76	BOUT	0	Analog signal output (B-Y or B)	
77	$\mathrm{AV}_{\text {SS }}$	-	Ground for DAC	
78	ROUT	0	Analog signal output (R-Y or R)	
79	$A V_{\text {DD }}$	-	Power supply for DAC	
80	YOUT	0	Analog signal output (Y or G)	

System Block Diagram

PIP Mode

Function

TC90A67F has horizontal and vertical sync separation circuit for sub picture, color demodulation circuit for sub picture, horizontal and vertical timing generation circuit for main picture, PIP control circuit.

Color demodulation circuit consists of digital circuit, and corresponds to M-NTSC, PAL, M-PAL, N-PAL system. It is possible to process the sub picture easily, according to adopting system clock of 24 MHz by digital PLL circuit locked fH . Horizontal and vertical timing generation circuit uses system clock (24 MHz) generated by analog PLL circuit locked main picture's fH.

PIP control circuit consists of filter for horizontal and vertical reduction, line memory, field memory and according to changing horizontal and vertical reduction factors, it is possible to carry out various pip sizes.

1. ADC, Clamping Circuit

Dynamic range of ADC is $1.32 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$ whose voltage is fixed in IC. (top voltage is 2.31 V , bottom voltage is $0.99 \mathrm{~V}) \mathrm{ADC}$ has pedestal clamp function, base voltage is output from CLMP terminal. The pedestal level becomes about 1.32 V. (64LSB)

2. Horizontal and Vertical Sync for Main Picture

It is necessary to input main picture's H -sync and V -sync at PHD and PVD terminal in order to make system clock for readout stored data into the internal field memory. PHD and PVD are fitted to 5 V . It can be inverted the polarity using IICBUS registers WHINV and WNINV at sub address 29 hex.

At terminals of IC, polarity of H -sync is positive and V -sync is negative.
The clocks from external VCO are selectable in 24 MHz and 48 MHz , it can be switched by given voltage to CKPSEL (SDIP: 52 pin, QFP: 57 pin) terminal. (CKPSEL $=\mathrm{L}: 24 \mathrm{MHz}$, CKPSEL $=\mathrm{H}: 48 \mathrm{MHz}$)

3. The System Clock Locked to the Sub Picture's Horizontal Sync.

The signal converted into the digital environment passes through horizontal sync separation circuit, horizontal locked circuit, which construct PLL circuit, it makes the system clock locked to the sub picture's horizontal sync.

This clock is put in internal VCO and generated the system clock of 24 MHz .

4. Horizontal Reduction

It is necessary to limit to frequency bandwidth for Y signal and color difference signal concerning PIP mode. Horizontal reduction is selectable using HWS. (HWS: sub address 10hex)

HWS [1:0]	Horizontal Reduction	Sampling Rate for Y	Sampling Rate for Color Difference
00	$1 / 3$	4 MHz	1 MHz
01	$1 / 4$	3 MHz	0.75 MHz
10	$1 / 6$	2 MHz	0.5 MHz
11	$1 / 8$	1.5 MHz	0.375 MHz

In order to horizontal reduction, LPFs are used for Y signal and color difference signal.
It is selectable in two kinds of LPF for Y signal and six kinds of LPF for color difference signal.

5. Vertical Reduction

It is necessary to reduce vertical direction concerning PIP mode, and vertical reduction is carried out from multiplication of coefficient as below. Vertical reduction is selectable using VWS.
(VWS: sub address 10hex)

Vertical Reduction	1 H Coefficient	2 H Coefficient	3 H Coefficient	4 H Coefficient	5 H Coefficient	6 H Coefficient
$1 / 3(\mathrm{VWS}[1: 0]=00)$	$1 / 4$	$1 / 2$	$1 / 4$	-	-	
$1 / 4(\mathrm{VWS}[1: 0]=01)$	$1 / 8$	$3 / 8$	$3 / 8$	$1 / 8$	-	-
$1 / 5(\mathrm{VWS}[1: 0]=10)$	$1 / 16$	$1 / 4$	$3 / 8$	$1 / 4$	$1 / 16$	-
$1 / 6(\mathrm{VWS}[1: 0]=11)$	$1 / 16$	$3 / 16$	$1 / 4$	$1 / 4$	$3 / 16$	$1 / 16$

6. The Sub Picture's Area of Writing in the Field Memory and Reading from the Field Memory

Writing start position is defined horizontal start point to write (sub address 16hex: CHS) and vertical start point to write. (sub address 16hex: CVSN or sub address 17hex: CVSP)

CVSN: Vertical frequency of sub picture is 60 Hz
CVSP: Vertical frequency of sub picture is 50 Hz
Horizontal width of the sub picture is defined by sampling number of horizontal direction. (sub address 1Ahex: HSPL) The number of writing vertical lines is determined internally according to vertical frequency of the main picture and VWS.
Reading start position is defined horizontal start point to read (sub address 14hex: PHS) and vertical start point to read. (sub address 14hex: PVSN or 15hex: PVSP)

PVSN: Vertical frequency of sub picture is 60 Hz
PVSP: Vertical frequency of sub picture is 50 Hz
Horizontal display size of the sub picture is defined by PHW (sub address 12hex) and the readout number of vertical lines is defined by PVWN (sub address 12hex) or PVWP (sub address 13hex).

PVWN: Vertical frequency of sub picture is 60 Hz
PVWP: Vertical frequency of sub picture is 50 Hz

7. DACs for Y Signal and Color Difference Signal

TC90A67F is built-in three 8 bit-DAC in motion on 24 MHz . Output dynamic range is determined by the difference between VDD and VREFD terminal voltage. Standard level is $1.5 \mathrm{~V}_{\mathrm{p}}$ p.

8. ACC Control

ACC control is carried out comparing demodulation result of color burst signal with set reference level by ACCPAL or ACCNTSC register. (ACCPAL, ACCNTSC: sub address 21hex)

When compared value is less than the reference level, controller puts on gain, and more than reference level, controller cuts down one.

9. Peaking Circuit for Y Signal

It is possible to carry out a clear picture according to putting up some frequency bandwidth when sub picture becomes indistinct picture for reducing high frequency bandwidth using LPF for Y signal. There are two kinds of characteristics for LPF, and it is selectable about gain of four stages respectively using YPKGS and YPKGG.

YPKGS: select for LPF characteristics (sub address 10hex)
YPKGG: select for gain (sub address 10hex)

10. PGB Matrix Circuit

For a built-in RGB matrix circuit, and when RGBON $=1$, it can be changed $R-Y$, Y, B-Y into RGB signal. How to find the value of coefficient ($\mathrm{a}, \mathrm{b}, \mathrm{c}$) is as below.

1Chex: MTXCR: a, MTXCG2: b, MTXCG1: c (on condition $0 \leqq \mathrm{a}<1,0 \leqq \mathrm{~b}<1,0 \leqq \mathrm{c}<1$)
$\mathrm{R}=\mathrm{a}(\mathrm{R}-\mathrm{Y})+\mathrm{Y}$
$\mathrm{G}=\mathrm{b}\{-(\mathrm{R}-\mathrm{Y})\}+\mathrm{c}\{-(\mathrm{B}-\mathrm{Y})\}+\mathrm{Y}$
$B=(B-Y)+Y$

11. Blue Back Function

It is possible to control blue back function using BBACK resister. (BBACK: sub address 13hex, BBACK = 1: blue back mode)
It is available for only sub picture set to live mode. BBACK is useful when detected V chip or no signal. it can be selected in four kinds of colors using BLEVEL.
(BLEVEL: sub address 13hex)

12. Addition of Frame

It is possible to add the frame to the sub picture. It is selectable frame width by FRAMEW and adjustable frame color for RGB or R-Y, Y, B-Y respectively by FRAMEYG, FRAMER, FRAMEB.
(FRAMEW, FRAMEYG, FRAMER, FRAMEB: sub address 1Ehex)

13. CCD Slice Circuit

This IC has a CCD slice circuit, picks up CCD data, the CCD data and CCD slice conditions can be checked on using IIC BUS read mode.

Bus Map (the value in parentheses indicate preseted data. the parts of mesh is fixed, input the indicated value.)

Sub Address	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
26	SSLV [5:0] (20)						$\underset{[4: 0]}{\mathrm{CCDSBH}} \quad$ (0C)					$\begin{gathered} \text { CCDSBL } \\ {[4: 0]} \\ \hline \end{gathered}$			(4)	
27	1	1	0	0	0	0	0	0	0	0	0	0	0	$\begin{gathered} \hline \text { FLDSEL } \end{gathered}$	SELFLOOP (0)	SLVFIX (1)
28	1	0	1	0	CCDL [3:0] (8)				$\begin{aligned} & \text { F60 } \\ & \text { (0) } \end{aligned}$	$\begin{aligned} & \text { F50 } \\ & (0) \end{aligned}$	0	0	0	0	0	WS262 (0)
29	1	0	0	WS262 (0)	WVINV (0)	WHINV (0)	$\begin{aligned} & \hline \text { F60 } \\ & (0) \end{aligned}$	$\begin{aligned} & \hline \text { F50 } \\ & \text { (0) } \end{aligned}$	0	0	0	0	0	0	0	0

Description of ${ }^{2} \mathrm{C}$ Bus Registers

Write Command

Sub Address	Bit	Name	Preset	Comment
10H	D15	-	0	Fix to '0'
	D14	TRAPFIX	0	Change fsc-trap mode. 0 : auto, 1: fix
	D13	TRAP358	0	Select fsc-trap characteristic. (active at TRAPFIX $=1$ only) 0: 4.43 MHz, 1: 3.58 MHz
	D12, D11	YDLY1 [1:0]	01	Y-output signal delay against U and V output signal (rough).
	D10	YPKGS	0	Select Y-peaking filter characteristic. 0 : hi-band, 1: low-band
	D9	YLPFS	0	Select Y-horizontal decimation filter characteristic. 0 : hi-band, 1: low-band
	D8, D7	YPKGG [1:0]	00	Select Y-peaking gain level. $\quad 00: 0,01: 1 / 4,10: 1 / 2,11: 1$
	D6 to D4	CLPF [2:0]	000	Select R-Y/B-Y horizontal decimation filter characteristic.
	D3, D2	VWS [1:0]	00	Select vertical decimation. $\quad 00: 1 / 3,01: 1 / 4,10: 1 / 5,11: 1 / 6$
	D1, D0	HWS [1:0]	00	Select horizontal decimation. $\quad 00: 1 / 3,01: 1 / 4,10: 1 / 6,11: 1 / 8$

\(\begin{array}{|c|c|c|c|ll|}\hline 11H \& D15, D14 \& - \& 00 \& Fix to '0'

\)\cline { 2 - 7 } \& D13 \& MF \& 0 \& Set single-field display mode. \& 0: normal, 1: Fixed to single-field display\end{array}$]$| D12 to D9 |
| :--- |
| |

12H	D15 to D9	PHW [6:0]	011000 1	Sub-pictures range in the main-picture. (horizontal width, rough)
	D8 to D0	PVWN [8:0]	001001 010	Sub-pictures range in the main-picture (vertical height)
			, when main-picture is 60 Hz system.	

13H	D15	BBACK	0	Replace sub-picture by blue-back at write-memory. 0 : normal, 1: blue-back
	D14, D13	$\begin{gathered} \text { BLEVEL } \\ {[1: 0]} \end{gathered}$	00	Select blue-back level. (DRAMCLRN $=1$ or BBACK = 1 only) 00: black, 01: blue1, 10: blue2, 11: blue3
	D12	SELGAIN	00	Control internal Y-level. $0: 1.5$ times, 1: Twice
	D11 to D9	PHE0 [2:0]	000	Sub-pictures range in the main-picture. (horizontal width, fine)
	D8 to D0	PVWP [8:0]	$\begin{gathered} 001011 \\ 100 \end{gathered}$	Sub-pictures range in the main-picture (vertical height) , when main-picture is 50 Hz system.

Sub Address	Bit	Name	Preset	Comment
14 H	D15 to D8	PHS [7:0]	001010 11	Horizontal starting point of the sub-pictures in the main-picture.
	D7 to D0	PVSN [7:0]	1001100 01	Vertical starting point of the sub-pictures in the main-picture
		when main-picture is 60 Hz system.		

15H	D15 to D9	PHC [6:0]	000000 0	Set clock frequency of main-picture processing.
	(set the dividing number of fH PLL.)			

16 H	D15 to D8	CHS [7:0]	000110 01	Horizontal starting point to write into the memory in the sub-picture.
	D7 to D0	CVSN [7:0]	000010 10	Vertical starting point to write into the memory in the sub-picture
			at 60 Hz system.	

17H	D15 to D10	BRTRGB $[5: 0]$	000000	Control bright at RGB mode. 100000: -32 LSB, 000000: 0 LSB, 011111: +31 LSB
	D9	-	1	Fix to '1'
	D8 to D0	CVSP [8:0]	100010 010	Vertical starting point to write into the memory in the sub-picture

18H	D15	DRAMCLRN	0	Field-memory reset
	D14	-	1	Fix to '1'
	D13	-	0	Fix to '0'
	D12 to D0	WADOS [12:0]	000000 000000 0	Set start-address to write the memory. (for the memory partition to memorize several sub-pictures at the same time.)

19H	D15 to D13	-	000	Fix to '0'
	D12 to D0	RADOS $[12: 0]$	000000 000000 0	Set start-address to read from the memory.
			(for the select of sub-pictures in the memory)	

1 AH	D15 to D10	HSPL [5:0]	110010	Set number of horizontal sampling on the input sub-picture.
	D9 to D5	CLVL [4:0]	00000	Set color-level. $10000:-6 \mathrm{~dB}, 00000: 0 \mathrm{~dB}, 01111:+6 \mathrm{~dB}$
D4 to D0	CTRT [4:0]	00000	Set contrast level. $00000:+1 \mathrm{~dB}, 1111:+3.5 \mathrm{~dB}$	

1BH	D15, D14	-	00	Fix to ' 0 '
	D13 to D8	HUEBIAS $[5: 0]$	000000	Adjustment the demodulation phases for R-Y signal. (NTSC only) $000000: 0^{\circ}, 111111:+45^{\circ}$
	D7 to D0	HUE [7:0]	000000 00	Adjustment the demodulation phase for R-Y and B-Y signals. (NTSC only) $10000000:-45^{\circ}, 00000000: 0^{\circ}, 01111111:+45^{\circ}$

Sub Address	Bit	Name	Preset	Comment
1CH	D15 to D10	MTXCB [5:0]	110001	Set RGB matrix coefficient 1.
	D9 to D5	MTXCG $[24: 20]$	01100	Set RGB matrix coefficient 2.
	D4 to D0	MTXCG [14:10]	01010	Set RGB matrix coefficient 3.

1DH	D15, D10	YGOS [5:0]	000000	Set DC offset of sub-picture. (Y or G signal) 100000: -32 LSB, 000000: 0 LSB, 011111: +31 LSB
	D9 to D5	ROS [4:0]	00000	Set DC offset of sub-picture. (R-Y or R signal) 10000: -16 LSB, 00000: 0 LSB, 01111: +15 LSB
	D4 to D0	BOS [4:0]	00000	Set DC offset of sub-picture. (B-Y or B signal) $10000:-16$ LSB, 00000: 0 LSB, 01111: +15 LSB

1EH	D15, D14	YSDLY [1:0]	01	Timing offset of Ys pulse. 00: -1 ck, 01: center, 10: $+1 \mathrm{ck}, 11:+2 \mathrm{ck}(24 \mathrm{MHz})$
	D13, D12	FRAMEW $[1: 0]$	00	Select the side frame width of sub-picture. 00: OFF (no-frame), 01: narrow, 10: center, 11: wide
	D11 to D8	FRAMEYG [3:0]	0000	Select frame signal level of PIP. (Y or G signal)
	D7 to D4	FRAMER [3:0]	0000	Select frame signal level of PIP. (R-Y or R signal)
	D3 to D0	FRAMEB $[3: 0]$	0000	Select frame signal level of PIP. (B-Y or B signal)

1FH	D15, D14	TYDLY [1:0]	00	Y-output signal delay for U and V output signal. (fine).
	D13	-	0	Fix to '0'
	D12	PMDFIX	0	Clock frequency to read from the memory. $0 \text { : auto, 1: fix }$
	D11, D10	PMDS [1:0]	00	Select Clock frequency to read from the memory. (active at PMDFIX $=1$ only) 00: $12 \mathrm{MHz}, 01: 9 \mathrm{MHz}, 10: 18 \mathrm{MHz}, 11: 16 \mathrm{MHz}$
	D9	OFF2527	0	Set $50 \mathrm{~Hz} / 60 \mathrm{~Hz}$-conversion mode. (VWS = 1/3 mode only) 0 : ON, 1: OFF
	D8	SELREV	0	Set reverse mode. 0 : normal, 1: reverse
	D7 to D3	-	00000	Fix to '0'
	D2	PFLDREV	1	Reverse PFIELD at internal circuit. 0: reverse, 1: normal
	D1	CFLDREV	0	Reverse CFIELD at internal circuit. 0: normal, 1: reverse
	D0	RGBON	1	Select output signal format. 0 : YUV, 1: RGB

$20 H$	D15 to D8	CHLOADN $[7: 0]$	111111 10	Set clock frequency of sub-picture processing at 60 Hz system. (set the dividing number of $\mathrm{H}-\mathrm{PLL}$)
	D7 to D0	CHLOADP $[7: 0]$	111110 01	Set clock frequency of main-picture processing at 50 Hz system.
(set the dividing number of H-PLL)				

Sub Address	Bit	Name	Preset	Comment
21 H	D15, D14	-	00	Fix to '0’
	D13 to D7	ACCPAL $[6: 0]$	011101 0	Set ACC reference level (for PAL). 0: Minimum level 127: Maximum level
	D6 to D0	ACCNTSC $[6: 0]$	101000 1	Set ACC reference level (for NTSC). 0: Minimum level 127: Maximum level

22H	D15, D14	-	00	Fix to '0'
	D13 to D7	KILON [6:0]	000110 0	Set color killer ON level. It must be set "KILON" < "KILOFF"
	D6 to D0	KILOFF $[6: 0]$	001010 0	Set color killer OFF level. It must be set "KILON" < "KILOFF"

23H	D15, D14	-	00	Fix to '0'
	D13 to D7	$\begin{gathered} \text { NTSOFF } \\ {[6: 0]} \end{gathered}$	$\begin{gathered} 001010 \\ 0 \end{gathered}$	Set level to turn over from NTSC to PAL in NTSC/PAL detector. 0 : Minimum level 63: maximum level It must be set "NTSON" < "NTSOFF"
	D6 to D0	$\begin{aligned} & \text { NTSON } \\ & {[6: 0]} \end{aligned}$	$\begin{gathered} 000110 \\ 0 \end{gathered}$	Set level to turn over from PAL to NTSC in NTSC/PAL detector. 0: Minimum level 63: maximum level It must be set "NTSON" < "NTSOFF"

24H	D15 to D7	-	000000 000	Fix to '0'
	D6 to D0	PIDREF $[6: 0]$	111011 0	Sensitivity of PAL-IDENT detection. $0:$ Minimum Sensitivity 63: Maximum Sensitivity

25H	D15 to D12	-	0000	Fix to '0'
	D11 to D8	-	1111	Fix to '1'
	D7, D6	-	00	Fix to '0'
	D5, D4	FSSTM [1:0]	10	Set cycle of color system detection in color sub-carrier frequency detector. (1field step) 0 : 1 field 3: 4 fields
	D3, D2	FSSEL [1:0]	00	Set color system of sub-picture processing. (at FSMO $=11$ only) 00: N-PAL, 01: M-PAL, 10: M-NTSC, 11: BG-PAL/4.43NTSC
	D1, D0	FSMO [1:0]	01	Mode for color sub-carrier frequency search 00: M-NTSC only, 01: BG-PAL/4.43NTSC \rightarrow M-NTSC, 10: $\mathrm{N}-\mathrm{PAL} \rightarrow \mathrm{M}-\mathrm{PAL} \rightarrow \mathrm{M}-\mathrm{NTSC}, 11:$ FSSEL [1:0]

$26 H$	D15 to D10	SSLV [5:0]	100000	Set slice level for CCD. (this data is initial value of peak detector circuit at auto-slice mode.)
	D9 to D5	CCDSBH $[4: 0]$	01100	Set minimum-width of high-period in start-bit for CCD.
	D4 to D0	CCDSBL $[4: 0]$	00100	Set minimum-width of low-period in start-bit for CCD.

Sub Address	Bit	Name	Preset	
27 H	D15, D14	-	11	Fix to '1'
	D13 to D3	-	000000 00000	Fix to '0'
	D2	FLDSEL	1	Control CCD slice 1.
	D1	SELPLOOP	0	Control CCD slice 2.

28 H	D15	-	1	Fix to '1'
	D14	-	0	Fix to '0'
	D13	-	1	Fix to '1'
	D12	-	0	Fix to '0'
	D11 to D8	CCDL [3:0]	1000	Set line No. of data slicing for CCD. 1000: 21 H (NTSC)
	D7	F60	0	Force 60 Hz mode (sub-picture). 0 : normal, 1: force
	D6	F50	0	Force 50 Hz mode (sub-picture). 0 : normal, 1: force
	D5 to D1	-	00000	Fix to '0'
	D0	WS262	0	Reverse CFIELD polarity. 0 : even high, 1: odd high

29 H	D15	-	0	Fix to '0'
	D14, D13	-	11	Fix to '1'
	D12	WS262	0	Reverse PFIELD polarity. 0 : even high, 1: odd high
	D11	WVINV	0	Set polarity of vertical sync pulse input at pin "PVD" . (main-picture) 0 : Negative, 1: Positive
	D10	WHINV	0	Set polarity of horizontal sync pulse input at pin "PHD". (main-picture) 0 : Positive, 1: Negative
	D9	F60	0	Force 60 Hz mode (main-picture) 0: OFF, 1: ON
	D8	F50	0	Force 50 Hz mode (main-picture) 0: OFF, 1: ON
	D7 to D0	-	$\begin{gathered} 000000 \\ 00 \\ \hline \end{gathered}$	Fix to '0'

Read Command

Sub Address	Bit	Name	Comment
00H	D15	CRI3DET	CRI detection.
	D14 to D11	CRIN [3:0]	CRI number detection.
	D10	CFIELD	Field-detection. (sub-picture) 1: 1st field, 0: 2nd field
	D9	SBDET	Start-bit (001) detection. 0 : not start-bit detected, 1: start-bit detected
	D8	AEDGE	Caution of too near sampling point for back-edge of data. $0:$ OK, 1: too near
	D7	BEDGE	Caution of too near sampling point for front-edge of data. $0:$ OK, 1: too near
	D6 to D0	SLV [6:0]	Slice level data.
01H	D15 to D0	$\begin{gathered} \text { CCDDATA } \\ \text { [15:0] } \end{gathered}$	CCD data including parity bits.
02H	D15	NOSIG	Result of no-signal detection (sub-picture) 0 : exist, 1: not-signal
	D14	CVMD525	Vertical sync frequency standard/non-standard detection. (sub-picture) 0: Non-standard, 1: Standard
	D13	CNOVPN	Vertical sync detection. (sub-picture) 0 : exist, 1: No vertical sync
	D12	CVDET60	Vertical frequency detection. (sub-picture) $0: 50 \mathrm{~Hz}, 1: 60 \mathrm{~Hz}$
	D11, D10	BCF [1:0]	$\begin{array}{ll}\text { System mode detection. (sub-picture) } & \text { 00: N-PAL, 01: M-PAL, 10: M-NTSC, } \\ & \text { 11: BG-PAL/4.43NTSC }\end{array}$
	D9	PVMD525	Vertical sync frequency standard/non-standard detection. (main-picture) 0: Non-standard, 1: Standard
	D8	PNOVPN	Vertical sync detection. (main-picture) 0 : exist, 1: No vertical sync
	D7	PVDET60	Vertical frequency detection. (main-picture) $0: 50 \mathrm{~Hz}, 1: 60 \mathrm{~Hz}$
	D6	CKIL	Color Killer detection. (sub-picture) 0 : Killer-off, 1: Killer-on
	D5	PDUNLOCK	H-PLL condition. (sub-picture) 0: Lock, 1: Un-lock
	D4	PALDET	PAL signal detection. $0:$ NTSC or No-color, 1: PAL

CCD Data Slicer Supplementary Explanation

SLVFIX	SELFLOOP	FLDSEL	Slice Level Control Circuit	Detected Slice Level Feedback	Motion Field at Auto Slice
1	0	-	ON	ON	1st and 2nd field
			Auto slice function works both field. (CCD details sliced at suitable level)		
1	1	-	ON	OFF	1st and 2nd field
			Slice level is detecting from value of SSLV resistor, and sliced the most suitable value. (Detected slice level is not feedback at the next field)		
0	1	-	ON	OFF	-
			Slice level is fixed value of SSLV resistor.		
0	0	0	ON	ON	2nd field (CFIELD = 0)
			Renewed slice level reading value of SLV resistor only 2nd field.		
		1	ON	ON	1st field (CFIELD = 1)
			Renewed slice level reading value of SLV resistor only 1st field.		

Outline of $I^{2} C$ BUS Control Format
Sub-pictures range in the main-picture. (horizontal width)

Slave Address

A6	A5	A4	A3	A2	A1	A0	RW
0	0	1	0	1	1	1	$1 / 0$

Write Format

Read Format

 by Philips.

Maximum Ratings (VSs $=\mathbf{0} \mathrm{V}, \mathbf{T a}=25^{\circ} \mathrm{C}$)

Characteristics	Symbol	Rating	Unit
Supply voltage	V_{DD}	V_{SS} to $\mathrm{V}_{\mathrm{SS}}+4.5$	V
Applied voltage	V_{IN}	-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3$	V
Applied current	I_{IN}	± 10	mA
Power dissipation	PD	1538	mW
Storage temperature	TSTG	-55 to 125	${ }^{\circ} \mathrm{C}$

TD-PD (on board mounting)

Recommended Operating Conditions

Characteristics	Symbol	Rating	Unit
Supply voltage	V_{DD}	3.0 to 3.6	V
Input voltage	$\mathrm{V}_{\text {IN }}$	0 to V_{DD}	V
Output voltage	$\mathrm{V}_{\text {OUT }}$	0 to V_{DD}	V
Ambient temperature	$\mathrm{T}_{\mathrm{OPR}}$	-10 to 70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics

DC Characteristics

Digital Part Operating Condition: $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$

Characteristics		Symbol	Test Circuit	Test Condition	Min	Typ.	Max	Unit	Applicable Terminals
Consumption current		IDD	-	-	-	160	230	mA	-
High input voltage	CMOS input	$\mathrm{V}_{1 \mathrm{H} 1}$	-	-	$\begin{gathered} \mathrm{V}_{\mathrm{DD}} \times \\ 0.8 \end{gathered}$	-	$V_{\text {DD }}$	V	(Note1)
	Schmitt trigger input	$\mathrm{V}_{\mathrm{IH} 2}$	-	-	$\begin{gathered} V_{D D} \times \\ 0.8 \end{gathered}$	-	$V_{\text {DD }}$	V	(Note2)
Low level input voltage	CMOS input	$\mathrm{V}_{\text {IL } 1}$	-	-	-	-	0.8	V	(Note1)
	Schmitt trigger input	$\mathrm{V}_{\text {IL2 }}$	-	-	-	-	0.8	V	(Note2)
Input current	High level	I_{H}	-	-	-10	-	+10	$\mu \mathrm{A}$	(Note1) (Note2)
	Low level	IIL	-	-	-10	-	+10	$\mu \mathrm{A}$	(Note1) (Note2)
Output voltage	High level	V_{OH}	-	-	2.4	-	-	V	(Note3)
	Low level	V OL	-	-	-	-	0.4	V	(Note3)

Note1: CKC, CKCSEL, TEST, SDA, PIPEN, CKPSEL, CKP, TESTM0, TESTM1, TESTM2, TEST2
Note2: RESET, SCL, PVD, PHD
Note3: CLMP, CSTD, PFIELD, CFIELD, CV REF, CH REF, CKILL, VCHIP, Ys, PH REF

ADC Characteristics Operating Condition: $\mathrm{V} D=3.3 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$

Characteristics		Symbol	Test Circuit	Test Condition	Min	Typ.	Max	Unit	Applicable Terminals
A/D converter	Resolution	$\mathrm{R}_{\text {S1 }}$	-	-	-	-	8	bit	-
	Input level	ADIN	-	$A V_{D D}=3.3 \mathrm{~V}$	-	1.32	-	$\mathrm{V}_{\mathrm{p} \text {-p }}$	CVI
	Pin voltage	BIASA	-	-		0.9		V	BIASA
		$V_{\text {REFH }}$	-	-		2.3		V	$V_{\text {REFH }}$
		$V_{\text {REFL }}$	-	-		1.0		V	$\mathrm{V}_{\text {REFL }}$
	Non-linear error	ILE1	-	(8 bit precision)	-	-	± 3	LSB	-
	Differential non-linear error	DLE1	-	(8 bit precision)	-	-	± 2	LSB	-
	DG	DG	-	-	0	-	6.5	\%	-
	DP	DP	-	-	0	-	4.0	deg	-

DAC, VCO Characteristics Operating Condition: $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$

Characteristics		Symbol	Test Circuit	Test Condition	Min	Typ.	Max	Unit	Applicable Terminals
D/A converter (VIDEO)	Resolution	RS2	-	-	-	-	8	bit	-
	Output level	YOUT	-	($\mathrm{V}_{\text {DD }}-\mathrm{V}_{\text {REFD }}$)	-	-	1.5	V_{p-p}	YOUT
		ROUT	-	($\mathrm{V}_{\text {DD }}$ - $\mathrm{V}_{\text {REFD }}$)	-	-	1.5	V_{p-p}	ROUT
		BOUT	-	$\left(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\text {REFD }}\right)$	-	-	1.5	V_{p-p}	BOUT
	Non-linear error	ILE2	-	(8 bit precision)	-	-	± 1	LSB	-
	Differential non-linear error	DLE2	-	(8 bit precision)	-	-	± 1	LSB	-
	Pin voltage	BIAS1	-	-	0.8	1.0	1.4	V	BIAS1
		BIAS2	-	-	1.8	2.0	2.2	V	BIAS2
	Reference voltage level	VREFD	-	-	1.8	-	-	V	$V_{\text {REFD }}$
	Output impedance	ZOUT1	-	-	-	200	-	Ω	$\begin{aligned} & \text { YOUT, } \\ & \text { ROUT, } \\ & \text { BOUT } \end{aligned}$
D/A converter (CLOCK)	Resolution	$\mathrm{R}_{\text {SD2 }}$	-	-	-	-	6	bit	-
	Output level	CKOUT	-	$\left(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\text {REF }}\right)$	-	-	2.0	V_{p-p}	CKOUT
	Non-linear error	ILE3	-	(6 bit precision)	-	-	± 3	LSB	-
	Differential non-linear error	DLE3	-	(6 bit precision)	-	-	± 2	LSB	-
	Pin voltage	BIASD	-	-	0.8	1.0	1.4	V	BIASD
	Reference voltage level	$V_{\text {REF }}$	-	-	1.3	-	-	V	$V_{\text {REF }}$
	Output impedance	ZOUT2	-	-	-	200	-	Ω	CKOUT
VCO	Pull-in frequency	FCK1	-	-	5.4	6.0	6.6	MHz	-
	Input amplitude	VCK	-	-	1.0	2.0	-	V	CKIN
	Pull-in oscillation frequency	FCK2	-	-	21.6	24.0	26.4	MHz	-
	FILTER terminal voltage	FILTER	-	-	0.8	-	2.7	V	FILTER

Package Dimensions

QFP80-P-1420-0.80B Unit : mm

Weight: 1.6 g (typ.)

RESTRICTIONS ON PRODUCT USE

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc.
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.

